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Abstract

It is known that the learning rate is the most important
hyper-parameter to tune for training deep neural networks.
This paper describes a new method for setting the learning
rate, named cyclical learning rates, which practically elim-
inates the need to experimentally find the best values and
schedule for the global learning rates. Instead of mono-
tonically decreasing the learning rate, this method lets the
learning rate cyclically vary between reasonable bound-
ary values. Training with cyclical learning rates instead
of fixed values achieves improved classification accuracy
without a need to tune and often in fewer iterations. This
paper also describes a simple way to estimate “reasonable
bounds” – linearly increasing the learning rate of the net-
work for a few epochs. In addition, cyclical learning rates
are demonstrated on the CIFAR-10 and CIFAR-100 datasets
with ResNets, Stochastic Depth networks, and DenseNets,
and the ImageNet dataset with the AlexNet and GoogLeNet
architectures. These are practical tools for everyone who
trains neural networks.

1. Introduction
Deep neural networks are the basis of state-of-the-art re-

sults for image recognition [17, 23, 25], object detection
[7], face recognition [26], speech recognition [8], machine
translation [24], image caption generation [28], and driver-
less car technology [14]. However, training a deep neural
network is a difficult global optimization problem.

A deep neural network is typically updated by stochastic
gradient descent and the parameters θ (weights) are updated
by θt = θt−1 − εt

∂L
∂θ , where L is a loss function and εt is

the learning rate. It is well known that too small a learning
rate will make a training algorithm converge slowly while
too large a learning rate will make the training algorithm
diverge [2]. Hence, one must experiment with a variety of
learning rates and schedules.

Conventional wisdom dictates that the learning rate
should be a single value that monotonically decreases dur-

Figure 1. Classification accuracy while training CIFAR-10. The
red curve shows the result of training with one of the new learning
rate policies.

ing training. This paper demonstrates the surprising phe-
nomenon that a varying learning rate during training is ben-
eficial overall and thus proposes to let the global learning
rate vary cyclically within a band of values instead of set-
ting it to a fixed value. In addition, this cyclical learning rate
(CLR) method practically eliminates the need to tune the
learning rate yet achieve near optimal classification accu-
racy. Furthermore, unlike adaptive learning rates, the CLR
methods require essentially no additional computation.

The potential benefits of CLR can be seen in Figure
1, which shows the test data classification accuracy of the
CIFAR-10 dataset during training1. The baseline (blue
curve) reaches a final accuracy of 81.4% after 70, 000 it-
erations. In contrast, it is possible to fully train the network
using the CLR method instead of tuning (red curve) within
25,000 iterations and attain the same accuracy.

The contributions of this paper are:

1. A methodology for setting the global learning rates for
training neural networks that eliminates the need to
perform numerous experiments to find the best values
and schedule with essentially no additional computa-
tion.

2. A surprising phenomenon is demonstrated - allowing

1Hyper-parameters and architecture were obtained in April 2015 from
caffe.berkeleyvision.org/gathered/examples/cifar10.html



the learning rate to rise and fall is beneficial overall
even though it might temporarily harm the network’s
performance.

3. Cyclical learning rates are demonstrated with ResNets,
Stochastic Depth networks, and DenseNets on the
CIFAR-10 and CIFAR-100 datasets, and on ImageNet
with two well-known architectures: AlexNet [17] and
GoogleNet [25].

2. Related work
The book “Neural Networks: Tricks of the Trade” is a

terrific source of practical advice. In particular, Yoshua
Bengio [2] discusses reasonable ranges for learning rates
and stresses the importance of tuning the learning rate. A
technical report by Breuel [3] provides guidance on a vari-
ety of hyper-parameters. There are also a numerous web-
sites giving practical suggestions for setting the learning
rates.

Adaptive learning rates: Adaptive learning rates can be
considered a competitor to cyclical learning rates because
one can rely on local adaptive learning rates in place of
global learning rate experimentation but there is a signifi-
cant computational cost in doing so. CLR does not possess
this computational costs so it can be used freely.

A review of the early work on adaptive learning rates can
be found in George and Powell [6]. Duchi, et al. [5] pro-
posed AdaGrad, which is one of the early adaptive methods
that estimates the learning rates from the gradients.

RMSProp is discussed in the slides by Geoffrey Hinton2

[27]. RMSProp is described there as “Divide the learning
rate for a weight by a running average of the magnitudes
of recent gradients for that weight.” RMSProp is a funda-
mental adaptive learning rate method that others have built
on.

Schaul et al. [22] discuss an adaptive learning rate based
on a diagonal estimation of the Hessian of the gradients.
One of the features of their method is that they allow their
automatic method to decrease or increase the learning rate.
However, their paper seems to limit the idea of increasing
learning rate to non-stationary problems. On the other hand,
this paper demonstrates that a schedule of increasing the
learning rate is more universally valuable.

Zeiler [29] describes his AdaDelta method, which im-
proves on AdaGrad based on two ideas: limiting the sum
of squared gradients over all time to a limited window, and
making the parameter update rule consistent with a units
evaluation on the relationship between the update and the
Hessian.

More recently, several papers have appeared on adaptive
learning rates. Gulcehre and Bengio [9] propose an adaptive
learning rate algorithm, called AdaSecant, that utilizes the

2www.cs.toronto.edu/ tijmen/csc321/slides/lecture slides lec6.pdf

root mean square statistics and variance of the gradients.
Dauphin et al. [4] show that RMSProp provides a biased
estimate and go on to describe another estimator, named
ESGD, that is unbiased. Kingma and Lei-Ba [16] introduce
Adam that is designed to combine the advantages from Ada-
Grad and RMSProp. Bache, et al. [1] propose exploiting
solutions to a multi-armed bandit problem for learning rate
selection. A summary and tutorial of adaptive learning rates
can be found in a recent paper by Ruder [20].

Adaptive learning rates are fundamentally different from
CLR policies, and CLR can be combined with adaptive
learning rates, as shown in Section 4.1. In addition, CLR
policies are computationally simpler than adaptive learning
rates. CLR is likely most similar to the SGDR method [18]
that appeared recently.

3. Optimal Learning Rates

3.1. Cyclical Learning Rates

The essence of this learning rate policy comes from the
observation that increasing the learning rate might have a
short term negative effect and yet achieve a longer term ben-
eficial effect. This observation leads to the idea of letting the
learning rate vary within a range of values rather than adopt-
ing a stepwise fixed or exponentially decreasing value. That
is, one sets minimum and maximum boundaries and the
learning rate cyclically varies between these bounds. Ex-
periments with numerous functional forms, such as a trian-
gular window (linear), a Welch window (parabolic) and a
Hann window (sinusoidal) all produced equivalent results
This led to adopting a triangular window (linearly increas-
ing then linearly decreasing), which is illustrated in Figure
2, because it is the simplest function that incorporates this
idea. The rest of this paper refers to this as the triangular
learning rate policy.

Figure 2. Triangular learning rate policy. The blue lines represent
learning rate values changing between bounds. The input parame-
ter stepsize is the number of iterations in half a cycle.

An intuitive understanding of why CLR methods
work comes from considering the loss function topology.
Dauphin et al. [4] argue that the difficulty in minimizing the
loss arises from saddle points rather than poor local minima.



Saddle points have small gradients that slow the learning
process. However, increasing the learning rate allows more
rapid traversal of saddle point plateaus. A more practical
reason as to why CLR works is that, by following the meth-
ods in Section 3.3, it is likely the optimum learning rate will
be between the bounds and near optimal learning rates will
be used throughout training.

The red curve in Figure 1 shows the result of the
triangular policy on CIFAR-10. The settings used to cre-
ate the red curve were a minimum learning rate of 0.001
(as in the original parameter file) and a maximum of 0.006.
Also, the cycle length (i.e., the number of iterations until
the learning rate returns to the initial value) is set to 4, 000
iterations (i.e., stepsize = 2000) and Figure 1 shows that
the accuracy peaks at the end of each cycle.

Implementation of the code for a new learning rate policy
is straightforward. An example of the code added to Torch
7 in the experiments shown in Section 4.1.2 is the following
few lines:

l o c a l c y c l e = math . f l o o r (1 +
epochCoun te r / ( 2∗ s t e p s i z e ) )

l o c a l x = math . abs ( epochCoun te r / s t e p s i z e
− 2∗ c y c l e + 1)

l o c a l l r = o p t . LR + ( maxLR − o p t . LR)
∗ math . max ( 0 , (1−x ) )

where opt.LR is the specified lower (i.e., base) learning
rate, epochCounter is the number of epochs of training,
and lr is the computed learning rate. This policy is named
triangular and is as described above, with two new in-
put parameters defined: stepsize (half the period or cycle
length) andmax lr (the maximum learning rate boundary).
This code varies the learning rate linearly between the min-
imum (base lr) and the maximum (max lr).

In addition to the triangular policy, the following CLR
policies are discussed in this paper:

1. triangular2; the same as the triangular policy ex-
cept the learning rate difference is cut in half at the end
of each cycle. This means the learning rate difference
drops after each cycle.

2. exp range; the learning rate varies between the min-
imum and maximum boundaries and each bound-
ary value declines by an exponential factor of
gammaiteration.

3.2. How can one estimate a good value for the cycle
length?

The length of a cycle and the input parameter stepsize
can be easily computed from the number of iterations in
an epoch. An epoch is calculated by dividing the number
of training images by the batchsize used. For example,
CIFAR-10 has 50, 000 training images and the batchsize is
100 so an epoch = 50, 000/100 = 500 iterations. The final

accuracy results are actually quite robust to cycle length but
experiments show that it often is good to set stepsize equal
to 2 − 10 times the number of iterations in an epoch. For
example, setting stepsize = 8 ∗ epoch with the CIFAR-10
training run (as shown in Figure 1) only gives slightly better
results than setting stepsize = 2 ∗ epoch.

Furthermore, there is a certain elegance to the rhythm
of these cycles and it simplifies the decision of when to
drop learning rates and when to stop the current training
run. Experiments show that replacing each step of a con-
stant learning rate with at least 3 cycles trains the network
weights most of the way and running for 4 or more cycles
will achieve even better performance. Also, it is best to stop
training at the end of a cycle, which is when the learning
rate is at the minimum value and the accuracy peaks.

3.3. How can one estimate reasonable minimum and
maximum boundary values?

There is a simple way to estimate reasonable minimum
and maximum boundary values with one training run of the
network for a few epochs. It is a “LR range test”; run your
model for several epochs while letting the learning rate in-
crease linearly between low and high LR values. This test
is enormously valuable whenever you are facing a new ar-
chitecture or dataset.

Figure 3. Classification accuracy as a function of increasing learn-
ing rate for 8 epochs (LR range test).

The triangular learning rate policy provides a simple
mechanism to do this. For example, in Caffe, set base lr to
the minimum value and set max lr to the maximum value.
Set both the stepsize and max iter to the same number of
iterations. In this case, the learning rate will increase lin-
early from the minimum value to the maximum value dur-
ing this short run. Next, plot the accuracy versus learning
rate. Note the learning rate value when the accuracy starts to
increase and when the accuracy slows, becomes ragged, or



Dataset LR policy Iterations Accuracy (%)
CIFAR-10 fixed 70,000 81.4
CIFAR-10 triangular2 25,000 81.4
CIFAR-10 decay 25,000 78.5
CIFAR-10 exp 70,000 79.1
CIFAR-10 exp range 42,000 82.2

AlexNet fixed 400,000 58.0
AlexNet triangular2 400,000 58.4
AlexNet exp 300,000 56.0
AlexNet exp 460,000 56.5
AlexNet exp range 300,000 56.5

GoogLeNet fixed 420,000 63.0
GoogLeNet triangular2 420,000 64.4
GoogLeNet exp 240,000 58.2
GoogLeNet exp range 240,000 60.2

Table 1. Comparison of accuracy results on test/validation data at
the end of the training.

starts to fall. These two learning rates are good choices for
bounds; that is, set base lr to the first value and set max lr
to the latter value. Alternatively, one can use the rule of
thumb that the optimum learning rate is usually within a
factor of two of the largest one that converges [2] and set
base lr to 1

3 or 1
4 of max lr.

Figure 3 shows an example of making this type of
run with the CIFAR-10 dataset, using the architecture and
hyper-parameters provided by Caffe. One can see from Fig-
ure 3 that the model starts converging right away, so it is rea-
sonable to set base lr = 0.001. Furthermore, above a learn-
ing rate of 0.006 the accuracy rise gets rough and eventually
begins to drop so it is reasonable to set max lr = 0.006.

Whenever one is starting with a new architecture or
dataset, a single LR range test provides both a good LR
value and a good range. Then one should compare runs with
a fixed LR versus CLR with this range. Whichever wins can
be used with confidence for the rest of one’s experiments.

4. Experiments
The purpose of this section is to demonstrate the effec-

tiveness of the CLR methods on some standard datasets and
with a range of architectures. In the subsections below, CLR
policies are used for training with the CIFAR-10, CIFAR-
100, and ImageNet datasets. These three datasets and a va-
riety of architectures demonstrate the versatility of CLR.

4.1. CIFAR-10 and CIFAR-100

4.1.1 Caffe’s CIFAR-10 architecture

The CIFAR-10 architecture and hyper-parameter settings on
the Caffe website are fairly standard and were used here as
a baseline. As discussed in Section 3.2, an epoch is equal

Figure 4. Classification accuracy as a function of iteration for
70, 000 iterations.

Figure 5. Classification accuracy as a function of iteration for the
CIFAR-10 dataset using adaptive learning methods. See text for
explanation.

to 500 iterations and a good setting for stepsize is 2, 000.
Section 3.3 discussed how to estimate reasonable minimum
and maximum boundary values for the learning rate from
Figure 3. All that is needed to optimally train the network
is to set base lr = 0.001 and max lr = 0.006. This is
all that is needed to optimally train the network. For the
triangular2 policy run shown in Figure 1, the stepsize
and learning rate bounds are shown in Table 2.

base lr max lr stepsize start max iter
0.001 0.005 2,000 0 16,000

0.0001 0.0005 1,000 16,000 22,000
0.00001 0.00005 500 22,000 25,000

Table 2. Hyper-parameter settings for CIFAR-10 example in Fig-
ure 1.

Figure 1 shows the result of running with the
triangular2 policy with the parameter setting in Table 2.
As shown in Table 1, one obtains the same test classifica-
tion accuracy of 81.4% after only 25, 000 iterations with
the triangular2 policy as obtained by running the standard
hyper-parameter settings for 70, 000 iterations.



Figure 6. Batch Normalization CIFAR-10 example (provided with
the Caffe download).

One might speculate that the benefits from the
triangular policy derive from reducing the learning rate
because this is when the accuracy climbs the most. As
a test, a decay policy was implemented where the learn-
ing rate starts at the max lr value and then is linearly re-
duced to the base lr value for stepsize number of itera-
tions. After that, the learning rate is fixed to base lr. For
the decay policy, max lr = 0.007, base lr = 0.001, and
stepsize = 4000. Table 1 shows that the final accuracy is
only 78.5%, providing evidence that both increasing and
decreasing the learning rate are essential for the benefits of
the CLR method.

Figure 4 compares the exp learning rate policy in Caffe
with the new exp range policy using gamma = 0.99994
for both policies. The result is that when using the
exp range policy one can stop training at iteration 42, 000
with a test accuracy of 82.2% (going to iteration 70, 000
does not improve on this result). This is substantially better
than the best test accuracy of 79.1% one obtains from using
the exp learning rate policy.

The current Caffe download contains additional archi-
tectures and hyper-parameters for CIFAR-10 and in partic-
ular there is one with sigmoid non-linearities and batch nor-
malization. Figure 6 compares the training accuracy using
the downloaded hyper-parameters with a fixed learning rate
(blue curve) to using a cyclical learning rate (red curve). As
can be seen in this Figure, the final accuracy for the fixed
learning rate (60.8%) is substantially lower than the cyclical
learning rate final accuracy (72.2%). There is clear perfor-
mance improvement when using CLR with this architecture
containing sigmoids and batch normalization.

Experiments were carried out with architectures featur-
ing both adaptive learning rate methods and CLR. Table 3
lists the final accuracy values from various adaptive learning
rate methods, run with and without CLR. All of the adap-
tive methods in Table 3 were run by invoking the respective
option in Caffe. The learning rate boundaries are given in
Table 3 (just below the method’s name), which were deter-
mined by using the technique described in Section 3.3. Just
the lower bound was used for base lr for the fixed policy.

LR type/bounds LR policy Iterations Accuracy (%)
Nesterov [19] fixed 70,000 82.1
0.001 - 0.006 triangular 25,000 81.3
ADAM [16] fixed 70,000 81.4

0.0005 - 0.002 triangular 25,000 79.8
triangular 70,000 81.1

RMSprop [27] fixed 70,000 75.2
0.0001 - 0.0003 triangular 25,000 72.8

triangular 70,000 75.1
AdaGrad [5] fixed 70,000 74.6
0.003 - 0.035 triangular 25,000 76.0
AdaDelta [29] fixed 70,000 67.3

0.01 - 0.1 triangular 25,000 67.3

Table 3. Comparison of CLR with adaptive learning rate methods.
The table shows accuracy results for the CIFAR-10 dataset on test
data at the end of the training.

Table 3 shows that for some adaptive learning rate meth-
ods combined with CLR, the final accuracy after only
25,000 iterations is equivalent to the accuracy obtained
without CLR after 70,000 iterations. For others, it was nec-
essary (even with CLR) to run until 70,000 iterations to ob-
tain similar results. Figure 5 shows the curves from running
the Nesterov method with CLR (reached 81.3% accuracy in
only 25,000 iterations) and the Adam method both with and
without CLR (both needed 70,000 iterations). When using
adaptive learning rate methods, the benefits from CLR are
sometimes reduced, but CLR can still valuable as it some-
times provides benefit at essentially no cost.

4.1.2 ResNets, Stochastic Depth, and DenseNets

Residual networks [10, 11], and the family of variations
that have subsequently emerged, achieve state-of-the-art re-
sults on a variety of tasks. Here we provide comparison
experiments between the original implementations and ver-
sions with CLR for three members of this residual net-
work family: the original ResNet [10], Stochastic Depth
networks [13], and the recent DenseNets [12]. Our ex-
periments can be readily replicated because the authors of
these papers make their Torch code available3. Since all
three implementation are available using the Torch 7 frame-
work, the experiments in this section were performed using
Torch. In addition to the experiment in the previous Sec-
tion, these networks also incorporate batch normalization
[15] and demonstrate the value of CLR for architectures
with batch normalization.

Both CIFAR-10 and the CIFAR-100 datasets were used

3https://github.com/facebook/fb.resnet.torch,
https://github.com/yueatsprograms/Stochastic Depth,
https://github.com/liuzhuang13/DenseNet



in these experiments. The CIFAR-100 dataset is similar to
the CIFAR-10 data but it has 100 classes instead of 10 and
each class has 600 labeled examples.

Architecture CIFAR-10 (LR) CIFAR-100 (LR)
ResNet 92.8(0.1) 71.2(0.1)
ResNet 93.3(0.2) 71.6(0.2)
ResNet 91.8(0.3) 71.9(0.3)

ResNet+CLR 93.6(0.1− 0.3) 72.5(0.1− 0.3)
SD 94.6(0.1) 75.2(0.1)
SD 94.5(0.2) 75.2(0.2)
SD 94.2(0.3) 74.6(0.3)

SD+CLR 94.5(0.1− 0.3) 75.4(0.1− 0.3)
DenseNet 94.5(0.1) 75.2(0.1)
DenseNet 94.5(0.2) 75.3(0.2)
DenseNet 94.2(0.3) 74.5(0.3)

DenseNet+CLR 94.9(0.1− 0.2) 75.9(0.1− 0.2)

Table 4. Comparison of CLR with ResNets [10, 11], Stochastic
Depth (SD) [13], and DenseNets [12]. The table shows the average
accuracy of 5 runs for the CIFAR-10 and CIFAR-100 datasets on
test data at the end of the training.

The results for these two datasets on these three archi-
tectures are summarized in Table 4. The left column give
the architecture and whether CLR was used in the experi-
ments. The other two columns gives the average final ac-
curacy from five runs and the initial learning rate or range
used in parenthesis, which are reduced (for both the fixed
learning rate and the range) during the training according to
the same schedule used in the original implementation. For
all three architectures, the original implementation uses an
initial LR of 0.1 which we use as a baseline.

The accuracy results in Table 4 in the right two columns
are the average final test accuracies of five runs. The
Stochastic Depth implementation was slightly different than
the ResNet and DenseNet implementation in that the au-
thors split the 50,000 training images into 45,000 training
images and 5,000 validation images. However, the reported
results in Table 4 for the SD architecture is only test accura-
cies for the five runs. The learning rate range used by CLR
was determined by the LR range test method and the cycle
length was choosen as a tenth of the maximum number of
epochs that was specified in the original implementation.

In addition to the accuracy results shown in Table 4,
similar results were obtained in Caffe for DenseNets [12]
on CIFAR-10 using the prototxt files provided by the au-
thors. The average accuracy of five runs with learning rates
of 0.1, 0.2, 0.3 was 91.67%, 92.17%, 92.46%, respectively,
but running with CLR within the range of 0.1 to 0.3, the
average accuracy was 93.33%.

The results from all of these experiments show similar or
better accuracy performance when using CLR versus using
a fixed learning rate, even though the performance drops at

Figure 7. AlexNet LR range test; validation classification accuracy
as a function of increasing learning rate.

Figure 8. Validation data classification accuracy as a function of
iteration for fixed versus triangular.

some of the learning rate values within this range. These
experiments confirm that it is beneficial to use CLR for a
variety of residual architectures and for both CIFAR-10 and
CIFAR-100.

4.2. ImageNet

The ImageNet dataset [21] is often used in deep learning
literature as a standard for comparison. The ImageNet clas-
sification challenge provides about 1, 000 training images
for each of the 1, 000 classes, giving a total of 1, 281, 167
labeled training images.

4.2.1 AlexNet

The Caffe website provides the architecture and hyper-
parameter files for a slightly modified AlexNet [17]. These
were downloaded from the website and used as a baseline.
In the training results reported in this section, all weights



Figure 9. Validation data classification accuracy as a function of
iteration for fixed versus triangular.

were initialized the same so as to avoid differences due to
different random initializations.

Since the batchsize in the architecture file is 256, an
epoch is equal to 1, 281, 167/256 = 5, 005 iterations.
Hence, a reasonable setting for stepsize is 6 epochs or
30, 000 iterations.

Next, one can estimate reasonable minimum and maxi-
mum boundaries for the learning rate from Figure 7. It can
be seen from this figure that the training doesn’t start con-
verging until at least 0.006 so setting base lr = 0.006 is
reasonable. However, for a fair comparison to the baseline
where base lr = 0.01, it is necessary to set the base lr to
0.01 for the triangular and triangular2 policies or else
the majority of the apparent improvement in the accuracy
will be from the smaller learning rate. As for the maxi-
mum boundary value, the training peaks and drops above
a learning rate of 0.015 so max lr = 0.015 is reasonable.
For comparing the exp range policy to the exp policy, set-
ting base lr = 0.006 and max lr = 0.014 is reasonable
and in this case one expects that the average accuracy of the
exp range policy to be equal to the accuracy from the exp
policy.

Figure 9 compares the results of running with the fixed
versus the triangular2 policy for the AlexNet architecture.
Here, the peaks at iterations that are multiples of 60,000
should produce a classification accuracy that corresponds
to the fixed policy. Indeed, the accuracy peaks at the end
of a cycle for the triangular2 policy are similar to the ac-
curacies from the standard fixed policy, which implies that
the baseline learning rates are set quite well (this is also im-
plied by Figure 7). As shown in Table 1, the final accuracies
from the CLR training run are only 0.4% better than the ac-
curacies from the fixed policy.

Figure 10 compares the results of running with the exp
versus the exp range policy for the AlexNet architecture
with gamma = 0.999995 for both policies. As expected,

Figure 10. Validation data classification accuracy as a function of
iteration for exp versus exp range.

Figure 11. GoogleNet LR range test; validation classification ac-
curacy as a function of increasing learning rate.

Figure 10 shows that the accuracies from the exp range
policy do oscillate around the exp policy accuracies. The
advantage of the exp range policy is that the accuracy of
56.5% is already obtained at iteration 300, 000 whereas the
exp policy takes until iteration 460, 000 to reach 56.5%.

Finally, a comparison between the fixed and exp poli-
cies in Table 1 shows the fixed and triangular2 policies
produce accuracies that are almost 2% better than their ex-
ponentially decreasing counterparts, but this difference is
probably due to not having tuned gamma.

4.2.2 GoogLeNet/Inception Architecture

The GoogLeNet architecture was a winning entry to the
ImageNet 2014 image classification competition. Szegedy
et al. [25] describe the architecture in detail but did not
provide the architecture file. The architecture file publicly
available from Princeton4 was used in the following exper-
iments. The GoogLeNet paper does not state the learning
rate values and the hyper-parameter solver file is not avail-

4vision.princeton.edu/pvt/GoogLeNet/



Figure 12. Validation data classification accuracy as a function of
iteration for fixed versus triangular.

able for a baseline but not having these hyper-parameters is
a typical situation when one is developing a new architec-
ture or applying a network to a new dataset. This is a situa-
tion that CLR readily handles. Instead of running numerous
experiments to find optimal learning rates, the base lr was
set to a best guess value of 0.01.

The first step is to estimate the stepsize setting. Since
the architecture uses a batchsize of 128 an epoch is equal to
1, 281, 167/128 = 10, 009 iterations. Hence, good settings
for stepsize would be 20, 000, 30, 000, or possibly 40, 000.
The results in this section are based on stepsize = 30000.

The next step is to estimate the bounds for the learning
rate, which is found with the LR range test by making a
run for 4 epochs where the learning rate linearly increases
from 0.001 to 0.065 (Figure 11). This figure shows that one
can use bounds between 0.01 and 0.04 and still have the
model reach convergence. However, learning rates above
0.025 cause the training to converge erratically. For both
triangular2 and the exp range policies, the base lr was
set to 0.01 and max lr was set to 0.026. As above, the
accuracy peaks for both these learning rate policies corre-
spond to the same learning rate value as the fixed and exp
policies. Hence, the comparisons below will focus on the
peak accuracies from the LCR methods.

Figure 12 compares the results of running with the fixed
versus the triangular2 policy for this architecture (due to
time limitations, each training stage was not run until it fully
plateaued). In this case, the peaks at the end of each cycle
for the triangular2 policy produce better accuracies than
the fixed policy. The final accuracy shows an improvement
from the network trained by the triangular2 policy (Ta-
ble 1) to be 1.4% better than the accuracy from the fixed
policy. This demonstrates that the triangular2 policy im-
proves on a “best guess” for a fixed learning rate.

Figure 13 compares the results of running with the exp
versus the exp range policy with gamma = 0.99998.
Once again, the peaks at the end of each cycle for the

Figure 13. Validation data classification accuracy as a function of
iteration for exp versus exp range.

exp range policy produce better validation accuracies than
the exp policy. The final accuracy from the exp range pol-
icy (Table 1) is 2% better than from the exp policy.

5. Conclusions
The results presented in this paper demonstrate the ben-

efits of the cyclic learning rate (CLR) methods. A short run
of only a few epochs where the learning rate linearly in-
creases is sufficient to estimate boundary learning rates for
the CLR policies. Then a policy where the learning rate
cyclically varies between these bounds is sufficient to ob-
tain near optimal classification results, often with fewer it-
erations. This policy is easy to implement and unlike adap-
tive learning rate methods, incurs essentially no additional
computational expense.

This paper shows that use of cyclic functions as a learn-
ing rate policy provides substantial improvements in perfor-
mance for a range of architectures. In addition, the cyclic
nature of these methods provides guidance as to times to
drop the learning rate values (after 3 - 5 cycles) and when to
stop the the training. All of these factors reduce the guess-
work in setting the learning rates and make these methods
practical tools for everyone who trains neural networks.

This work has not explored the full range of applications
for cyclic learning rate methods. We plan to determine if
equivalent policies work for training different architectures,
such as recurrent neural networks. Furthermore, we believe
that a theoretical analysis would provide an improved un-
derstanding of these methods, which might lead to improve-
ments in the algorithms.
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A. Instructions for adding CLR to Caffe
Modify SGDSolver¡Dtype¿::GetLearningRate() which

is in sgd solver.cpp (near line 38):

} e l s e i f ( l r p o l i c y == ” t r i a n g u l a r ” ) {
i n t i t r = t h i s−> i t e r − t h i s−>param . s t a r t l r p o l i c y ( ) ;
i f ( i t r > 0) {

i n t c y c l e = i t r / (2∗ t h i s−>param . s t e p s i z e ( ) ) ;
f l o a t x = ( f l o a t ) ( i t r − (2∗ c y c l e +1)∗ t h i s−>param . s t e p s i z e ( ) ) ;
x = x / t h i s−>param . s t e p s i z e ( ) ;
r a t e = t h i s−>param . b a s e l r ( ) + ( t h i s−>param . m a x l r ()− t h i s−>param . b a s e l r ( ) )

∗ s t d : : max ( double ( 0 ) , ( 1 . 0 − f a b s ( x ) ) ) ;
} e l s e {

r a t e = t h i s−>param . b a s e l r ( ) ;
}

} e l s e i f ( l r p o l i c y == ” t r i a n g u l a r 2 ” ) {
i n t i t r = t h i s−> i t e r − t h i s−>param . s t a r t l r p o l i c y ( ) ;
i f ( i t r > 0) {

i n t c y c l e = i t r / (2∗ t h i s−>param . s t e p s i z e ( ) ) ;
f l o a t x = ( f l o a t ) ( i t r − (2∗ c y c l e +1)∗ t h i s−>param . s t e p s i z e ( ) ) ;
x = x / t h i s−>param . s t e p s i z e ( ) ;
r a t e = t h i s−>param . b a s e l r ( ) + ( t h i s−>param . m a x l r ()− t h i s−>param . b a s e l r ( ) )

∗ s t d : : min ( double ( 1 ) , s t d : : max ( double ( 0 ) , ( 1 . 0 −
f a b s ( x ) ) / pow ( 2 . 0 , double ( c y c l e ) ) ) ) ;
} e l s e {

r a t e = t h i s−>param . b a s e l r ( ) ;
}

Modify message SolverParameter which is in caffe.proto
(near line 100):

o p t i o n a l f l o a t s t a r t l r p o l i c y = 4 1 ;
o p t i o n a l f l o a t m a x l r = 4 2 ; / / The maximum l e a r n i n g r a t e f o r CLR p o l i c i e s

B. Instructions for adding CLR to Keras
Please see https://github.com/bckenstler/CLR.


